Kerangka Materi
Pendahuluan
Tinjauan MLOps
- Apa itu MLOps?
- MLOps dalam arsitektur Azure Machine Learning
Persiapan Lingkungan MLOps
- Pengaturan Azure Machine Learning
Reproduktibilitas Model
- Bekerja dengan pipeline Azure Machine Learning
- Menghubungkan proses Machine Learning dengan pipeline
Kontainer dan Deploy
- Mengemas model dalam kontainer
- Melakukan deploy kontainer
- Memvalidasi model
Otomatisasi Operasi
- Mengotomatisasi operasi dengan Azure Machine Learning dan GitHub
- Melatih ulang dan menguji model
- Mengeluarkan model baru
Pemerintahan dan Pengendalian
- Membuat jalur audit
- Mengelola dan memantau model
Ringkasan dan Kesimpulan
Persyaratan
- Pengalaman dengan Azure Machine Learning
Penonton
- Data Scientists
Testimoni (5)
I've got to try out resources that I've never used before.
Daniel - INIT GmbH
Kursus - Architecting Microsoft Azure Solutions
sangat ramah dan membantu
Aktar Hossain - Unit4
Kursus - Building Microservices with Microsoft Azure Service Fabric (ASF)
Diterjemahkan Mesin
the ML ecosystem not only MLFlow but Optuna, hyperops, docker , docker-compose
Guillaume GAUTIER - OLEA MEDICAL
Kursus - MLflow
The practical part, I was able to perform exercises and to test the Microsoft Azure features
Alex Bela - Continental Automotive Romania SRL
Kursus - Programming for IoT with Azure
I enjoyed participating in the Kubeflow training, which was held remotely. This training allowed me to consolidate my knowledge for AWS services, K8s, all the devOps tools around Kubeflow which are the necessary bases to properly tackle the subject. I wanted to thank Malawski Marcin for his patience and professionalism for training and advice on best practices. Malawski approaches the subject from different angles, different deployment tools Ansible, EKS kubectl, Terraform. Now I am definitely convinced that I am going into the right field of application.