Kerangka Materi
Pengantar ke Machine Learning dan Google Colab
- Ringkasan tentang pembelajaran mesin
- Menyiapkan Google Colab
- Pembaruan Python
Supervised Learning dengan Scikit-learn
- Model regresi
- Model klasifikasi
- Evaluasi dan optimisasi model
Teknik Unsupervised Learning
- Algoritma klastering
- Pengurangan dimensi
- Pembelajaran aturan asosiasi
Konsep Lanjutan Machine Learning
- Jaringan saraf dan pembelajaran mendalam
- Mesin vektor dukungan
- Metode ensemble
Topik Khusus dalam Machine Learning
- Feature engineering
- Penyetelan hyperparameter
- Interpretabilitas model
Alur Kerja Proyek Machine Learning
- Pra-pemrosesan data
- Pemilihan model
- Implementasi model
Proyek Capstone
- Menentukan pernyataan masalah
- Pengumpulan dan pembersihan data
- Pelatihan dan evaluasi model
Ringkasan dan Langkah Selanjutnya
Persyaratan
- Pemahaman tentang konsep pemrograman dasar
- Pengalaman dengan pemrograman Python
- Ketahui tentang konsep statistik dasar
Audience
- Ilmuwan data
- Pengembang perangkat lunak
Testimoni (2)
the ML ecosystem not only MLFlow but Optuna, hyperops, docker , docker-compose
Guillaume GAUTIER - OLEA MEDICAL
Kursus - MLflow
I enjoyed participating in the Kubeflow training, which was held remotely. This training allowed me to consolidate my knowledge for AWS services, K8s, all the devOps tools around Kubeflow which are the necessary bases to properly tackle the subject. I wanted to thank Malawski Marcin for his patience and professionalism for training and advice on best practices. Malawski approaches the subject from different angles, different deployment tools Ansible, EKS kubectl, Terraform. Now I am definitely convinced that I am going into the right field of application.