Kursus Pelatihan LangGraph in Healthcare: Workflow Orchestration for Regulated Environments
LangGraph enables stateful, multi-actor workflows powered by LLMs with precise control over execution paths and state persistence. In healthcare, these capabilities are crucial for compliance, interoperability, and building decision-support systems that align with medical workflows.
This instructor-led, live training (online or onsite) is aimed at intermediate-level to advanced-level professionals who wish to design, implement, and manage LangGraph-based healthcare solutions while addressing regulatory, ethical, and operational challenges.
By the end of this training, participants will be able to:
- Design healthcare-specific LangGraph workflows with compliance and auditability in mind.
- Integrate LangGraph applications with medical ontologies and standards (FHIR, SNOMED CT, ICD).
- Apply best practices for reliability, traceability, and explainability in sensitive environments.
- Deploy, monitor, and validate LangGraph applications in healthcare production settings.
Format of the Course
- Interactive lecture and discussion.
- Hands-on exercises with real-world case studies.
- Implementation practice in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Kerangka Materi
LangGraph Fundamentals for Healthcare
- Refresher on LangGraph architecture and principles
- Key healthcare use cases: patient triage, medical documentation, compliance automation
- Constraints and opportunities in regulated environments
Healthcare Data Standards and Ontologies
- Introduction to HL7, FHIR, SNOMED CT, and ICD
- Mapping ontologies into LangGraph workflows
- Data interoperability and integration challenges
Workflow Orchestration in Healthcare
- Designing patient-centric vs provider-centric workflows
- Decision branching and adaptive planning in clinical contexts
- Persistent state handling for longitudinal patient records
Compliance, Security, and Privacy
- HIPAA, GDPR, and regional healthcare regulations
- De-identification, anonymization, and secure logging
- Audit trails and traceability in graph execution
Reliability and Explainability
- Error handling, retries, and fault-tolerant design
- Human-in-the-loop decision support
- Explainability and transparency for medical workflows
Integration and Deployment
- Connecting LangGraph with EHR/EMR systems
- Containerization and deployment in healthcare IT environments
- Monitoring, logging, and SLA management
Case Studies and Advanced Scenarios
- Automated medical coding and billing workflows
- AI-assisted diagnosis support and clinical triage
- Compliance reporting and documentation automation
Summary and Next Steps
Persyaratan
- Intermediate knowledge of Python and LLM application development
- Understanding of healthcare data standards (e.g., HL7, FHIR) is beneficial
- Familiarity with LangChain or LangGraph basics
Audience
- Domain technologists
- Solution architects
- Consultants building LLM agents in regulated industries
Kursus Pelatihan Terbuka membutuhkan minimal 5 peserta.
Kursus Pelatihan LangGraph in Healthcare: Workflow Orchestration for Regulated Environments - Booking
Kursus Pelatihan LangGraph in Healthcare: Workflow Orchestration for Regulated Environments - Enquiry
LangGraph in Healthcare: Workflow Orchestration for Regulated Environments - Permintaan Konsultasi
Permintaan Konsultasi
Kursus Mendatang
Kursus Terkait
Advanced LangGraph: Optimization, Debugging, and Monitoring Complex Graphs
35 JamLangGraph is a framework for building stateful, multi-actor LLM applications as composable graphs with persistent state and control over execution.
This instructor-led, live training (online or onsite) is aimed at advanced-level AI platform engineers, DevOps for AI, and ML architects who wish to optimize, debug, monitor, and operate production-grade LangGraph systems.
By the end of this training, participants will be able to:
- Design and optimize complex LangGraph topologies for speed, cost, and scalability.
- Engineer reliability with retries, timeouts, idempotency, and checkpoint-based recovery.
- Debug and trace graph executions, inspect state, and systematically reproduce production issues.
- Instrument graphs with logs, metrics, and traces, deploy to production, and monitor SLAs and costs.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
AI Agents for Healthcare and Diagnostics
14 JamPelatihan langsung yang dipandu instruktur di Indonesia (online atau di tempat) ini ditujukan untuk profesional perawatan kesehatan tingkat menengah hingga tingkat lanjut dan pengembang AI yang ingin menerapkan solusi perawatan kesehatan berbasis AI.
Pada akhir pelatihan ini, peserta akan dapat:
- Memahami peran agen AI dalam perawatan kesehatan dan diagnostik.
- Mengembangkan model AI untuk analisis gambar medis dan diagnostik prediktif.
- Integrasikan AI dengan catatan kesehatan elektronik (EHR) dan alur kerja klinis.
- Pastikan kepatuhan terhadap peraturan perawatan kesehatan dan praktik AI yang etis.
AI dan AR/VR dalam Layanan Kesehatan
14 JamPelatihan langsung yang dipimpin instruktur di Indonesia (online atau di lokasi) ini ditujukan untuk profesional kesehatan tingkat menengah yang ingin menerapkan solusi AI dan AR/VR untuk pelatihan medis, simulasi operasi, dan rehabilitasi.
Setelah selesai mengikuti pelatihan ini, peserta akan dapat:
- Memahami peran AI dalam meningkatkan pengalaman AR/VR di bidang kesehatan.
- Menggunakan AR/VR untuk simulasi operasi dan pelatihan medis.
- Menerapkan alat-alat AR/VR dalam rehabilitasi pasien dan terapi.
- Menjelajahi masalah etika dan privasi di alat kesehatan yang ditingkatkan dengan AI.
AI untuk Kesehatan menggunakan Google Colab
14 JamPelatihan langsung yang dipimpin instruktur ini di Indonesia (online atau offline) ditujukan untuk para ilmuwan data tingkat menengah dan profesional kesehatan yang ingin memanfaatkan AI untuk aplikasi kesehatan canggih menggunakan Google Colab.
Setelah mengikuti pelatihan ini, peserta akan dapat:
- Mengimplementasikan model AI untuk kesehatan menggunakan Google Colab.
- Menggunakan AI untuk pemodelan prediktif dalam data kesehatan.
- Menganalisis citra medis dengan teknik yang didorong oleh AI.
- Menjelajahi pertimbangan etika dalam solusi kesehatan berbasis AI.
AI di Kesehatan
21 JamPelatihan langsung yang dipandu oleh instruktur ini, di Indonesia (online atau onsite), ditujukan bagi para profesional kesehatan dan ilmuwan data tingkat menengah yang ingin memahami dan menerapkan teknologi AI di lingkungan perawatan kesehatan.
Pada akhir pelatihan ini, peserta akan mampu:
- Mengidentifikasi tantangan utama perawatan kesehatan yang dapat diatasi oleh AI.
- Menganalisis dampak AI pada perawatan pasien, keselamatan, dan penelitian medis.
- Memahami hubungan antara AI dan model bisnis perawatan kesehatan.
- Menerapkan konsep-konsep AI fundamental ke skenario perawatan kesehatan.
- Mengembangkan model pembelajaran mesin untuk analisis data medis.
ChatGPT untuk Kesehatan
14 JamPelatihan langsung yang dipandu instruktur di Indonesia (daring atau tatap muka) ini ditujukan untuk profesional kesehatan dan peneliti yang ingin memanfaatkan ChatGPT untuk meningkatkan perawatan pasien, menyederhanakan alur kerja, dan meningkatkan hasil kesehatan.
Setelah menyelesaikan pelatihan ini, peserta akan dapat:
- Memahami dasar-dasar ChatGPT dan aplikasinya dalam bidang kesehatan.
- Menggunakan ChatGPT untuk memperotomatisasi proses dan interaksi di sektor kesehatan.
- Memberikan informasi medis yang akurat dan dukungan kepada pasien menggunakan ChatGPT.
- Mengaplikasikan ChatGPT untuk penelitian dan analisis medis.
Edge AI for Healthcare
14 JamPelatihan langsung yang dipimpin instruktur di Indonesia (online atau di lokasi) ini ditujukan untuk profesional kesehatan tingkat menengah, insinyur biomedis, dan pengembang AI yang ingin memanfaatkan Edge AI untuk solusi perawatan kesehatan yang inovatif.
Pada akhir pelatihan ini, peserta akan mampu:
- Pahami peran dan manfaat Edge AI dalam layanan kesehatan.
- Mengembangkan dan menerapkan model AI pada perangkat edge untuk aplikasi perawatan kesehatan.
- Menerapkan solusi Edge AI pada perangkat wearable dan alat diagnostik.
- Rancang dan terapkan sistem pemantauan pasien menggunakan Edge AI.
- Mengatasi pertimbangan etika dan peraturan dalam aplikasi AI perawatan kesehatan.
Generative AI dalam Kesehatan: Transformasi Medis dan Pelayanan Pasien
21 JamPelatihan langsung yang dipimpin instruktur di Indonesia (online atau di lokasi) ini ditujukan untuk profesional kesehatan tingkat pemula hingga menengah, analis data, dan pembuat kebijakan yang ingin memahami dan menerapkan AI generatif dalam konteks layanan kesehatan.
Pada akhir pelatihan ini, peserta akan mampu:
- Jelaskan prinsip dan penerapan AI generatif dalam perawatan kesehatan.
- Identifikasi peluang AI generatif untuk meningkatkan penemuan obat dan pengobatan yang dipersonalisasi.
- Memanfaatkan teknik AI generatif untuk pencitraan dan diagnostik medis.
- Menilai implikasi etis AI dalam lingkungan medis.
- Mengembangkan strategi untuk mengintegrasikan teknologi AI ke dalam sistem layanan kesehatan.
LangGraph Applications in Finance
35 JamLangGraph is a framework for building stateful, multi-actor LLM applications as composable graphs with persistent state and control over execution.
This instructor-led, live training (online or onsite) is aimed at intermediate-level to advanced-level professionals who wish to design, implement, and operate LangGraph-based finance solutions with proper governance, observability, and compliance.
By the end of this training, participants will be able to:
- Design finance-specific LangGraph workflows aligned to regulatory and audit requirements.
- Integrate financial data standards and ontologies into graph state and tooling.
- Implement reliability, safety, and human-in-the-loop controls for critical processes.
- Deploy, monitor, and optimize LangGraph systems for performance, cost, and SLAs.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
LangGraph Foundations: Graph-Based LLM Prompting and Chaining
14 JamLangGraph is a framework for building graph-structured LLM applications that support planning, branching, tool use, memory, and controllable execution.
This instructor-led, live training (online or onsite) is aimed at beginner-level developers, prompt engineers, and data practitioners who wish to design and build reliable, multi-step LLM workflows using LangGraph.
By the end of this training, participants will be able to:
- Explain core LangGraph concepts (nodes, edges, state) and when to use them.
- Build prompt chains that branch, call tools, and maintain memory.
- Integrate retrieval and external APIs into graph workflows.
- Test, debug, and evaluate LangGraph apps for reliability and safety.
Format of the Course
- Interactive lecture and facilitated discussion.
- Guided labs and code walkthroughs in a sandbox environment.
- Scenario-based exercises on design, testing, and evaluation.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
LangGraph for Legal Applications
35 JamLangGraph is a framework for building stateful, multi-actor LLM applications as composable graphs with persistent state and precise control over execution.
This instructor-led, live training (online or onsite) is aimed at intermediate-level to advanced-level professionals who wish to design, implement, and operate LangGraph-based legal solutions with the necessary compliance, traceability, and governance controls.
By the end of this training, participants will be able to:
- Design legal-specific LangGraph workflows that preserve auditability and compliance.
- Integrate legal ontologies and document standards into graph state and processing.
- Implement guardrails, human-in-the-loop approvals, and traceable decision paths.
- Deploy, monitor, and maintain LangGraph services in production with observability and cost controls.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Building Dynamic Workflows with LangGraph and LLM Agents
14 JamLangGraph is a framework for composing graph-structured LLM workflows that support branching, tool use, memory, and controllable execution.
This instructor-led, live training (online or onsite) is aimed at intermediate-level engineers and product teams who wish to combine LangGraph’s graph logic with LLM agent loops to build dynamic, context-aware applications such as customer support agents, decision trees, and information retrieval systems.
By the end of this training, participants will be able to:
- Design graph-based workflows that coordinate LLM agents, tools, and memory.
- Implement conditional routing, retries, and fallbacks for robust execution.
- Integrate retrieval, APIs, and structured outputs into agent loops.
- Evaluate, monitor, and harden agent behavior for reliability and safety.
Format of the Course
- Interactive lecture and facilitated discussion.
- Guided labs and code walkthroughs in a sandbox environment.
- Scenario-based design exercises and peer reviews.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
LangGraph for Marketing Automation
14 JamLangGraph is a graph-based orchestration framework that enables conditional, multi-step LLM and tool workflows, ideal for automating and personalizing content pipelines.
This instructor-led, live training (online or onsite) is aimed at intermediate-level marketers, content strategists, and automation developers who wish to implement dynamic, branching email campaigns and content generation pipelines using LangGraph.
By the end of this training, participants will be able to:
- Design graph-structured content and email workflows with conditional logic.
- Integrate LLMs, APIs, and data sources for automated personalization.
- Manage state, memory, and context across multi-step campaigns.
- Evaluate, monitor, and optimize workflow performance and delivery outcomes.
Format of the Course
- Interactive lectures and group discussions.
- Hands-on labs implementing email workflows and content pipelines.
- Scenario-based exercises on personalization, segmentation, and branching logic.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Multimodal AI untuk Kesehatan
21 JamPelatihan langsung yang dipandu instruktur di Indonesia (online atau di tempat) ini ditujukan untuk profesional perawatan kesehatan tingkat menengah hingga tingkat lanjut, peneliti medis, dan pengembang AI yang ingin menerapkan AI multimodal dalam diagnostik medis dan aplikasi perawatan kesehatan.
Pada akhir pelatihan ini, peserta akan dapat:
- Memahami peran AI multimodal dalam perawatan kesehatan modern.
- Integrasikan data medis terstruktur dan tidak terstruktur untuk diagnostik berbasis AI.
- Terapkan teknik AI untuk menganalisis gambar medis dan catatan kesehatan elektronik.
- Mengembangkan model prediktif untuk diagnosis penyakit dan rekomendasi pengobatan.
- Menerapkan ucapan dan pemrosesan bahasa alami (NLP) untuk transkripsi medis dan interaksi pasien.
Prompt Engineering untuk Kesehatan
14 JamPelatihan langsung yang dipimpin instruktur di Indonesia (online atau di tempat) ini ditujukan untuk profesional perawatan kesehatan tingkat menengah dan pengembang AI yang ingin memanfaatkan teknik rekayasa cepat untuk meningkatkan alur kerja medis, efisiensi penelitian, dan hasil pasien.
Pada akhir pelatihan ini, peserta akan dapat:
- Memahami dasar-dasar rekayasa cepat dalam perawatan kesehatan.
- Gunakan perintah AI untuk dokumentasi klinis dan interaksi pasien.
- Memanfaatkan AI untuk penelitian medis dan tinjauan literatur.
- Tingkatkan penemuan obat dan pengambilan keputusan klinis dengan perintah berbasis AI.
- Memastikan kepatuhan terhadap standar peraturan dan etika dalam AI perawatan kesehatan.