Terima kasih telah mengirimkan pertanyaan Anda! Salah satu anggota tim kami akan segera menghubungi Anda.
Terima kasih telah mengirimkan pemesanan Anda! Salah satu anggota tim kami akan segera menghubungi Anda.
Kerangka Materi
Introduction to WrenAI OSS
- Overview of WrenAI architecture
- Key OSS components and ecosystem
- Installation and setup
Semantic Modeling in Wren AI
- Defining semantic layers
- Designing reusable metrics and dimensions
- Best practices for consistency and maintainability
Text to SQL in Practice
- Mapping natural language to queries
- Improving SQL generation accuracy
- Common challenges and troubleshooting
Prompt Tuning and Optimization
- Prompt engineering strategies
- Fine-tuning for enterprise datasets
- Balancing accuracy and performance
Implementing Guardrails
- Preventing unsafe or costly queries
- Validation and approval mechanisms
- Governance and compliance considerations
Integrating WrenAI into Data Workflows
- Embedding Wren AI in pipelines
- Connecting to BI and visualization tools
- Multi-user and enterprise deployments
Advanced Use Cases and Extensions
- Custom plugins and API integrations
- Extending WrenAI with ML models
- Scaling for large datasets
Summary and Next Steps
Persyaratan
- Memiliki pemahaman yang kuat tentang SQL dan sistem basis data
- Pengalaman dalam pemodelan data dan lapisan semantik
- Familiarity with machine learning or natural language processing concepts
Peserta
- Insinyur data
- Insinyur analitis
- Insinyur ML
21 Jam