TensorFlow Extended (TFX) Training Course
TensorFlow Extended (TFX) is an end-to-end platform for deploying production ML pipelines.
This instructor-led, live training (online or onsite) is aimed at data scientists who wish to go from training a single ML model to deploying many ML models to production.
By the end of this training, participants will be able to:
- Install and configure TFX and supporting third-party tools.
- Use TFX to create and manage a complete ML production pipeline.
- Work with TFX components to carry out modeling, training, serving inference, and managing deployments.
- Deploy machine learning features to web applications, mobile applications, IoT devices and more.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Course Outline
Introduction
Setting up TensorFlow Extended (TFX)
Overview of TFX Features and Architecture
Understanding Pipelines and Components
Working with TFX Components
Ingesting Data
Validating Data
Tranforming a Data Set
Analyzing a Model
Feature Engineering
Training a Model
Orchestrating a TFX Pipeline
Managing Meta Data for ML Pipelines
Model Versioning with TensorFlow Serving
Deploying a Model to Production
Troubleshooting
Summary and Conclusion
Requirements
- An understanding of DevOps concepts
- Machine learning development experience
- Python programming experience
Audience
- Data scientists
- ML engineers
- Operation engineers
Open Training Courses require 5+ participants.
TensorFlow Extended (TFX) Training Course - Booking
TensorFlow Extended (TFX) Training Course - Enquiry
TensorFlow Extended (TFX) - Consultancy Enquiry
Consultancy Enquiry
Testimonials (1)
Tomasz really know the information well and the course was well paced.
Raju Krishnamurthy - Google
Course - TensorFlow Extended (TFX)
Upcoming Courses (Minimal 5 peserta)
Related Courses
Applied AI from Scratch
28 HoursIni adalah kursus 4 hari yang memperkenalkan AI dan penerapannya. Ada opsi untuk memiliki satu hari tambahan untuk melaksanakan proyek AI setelah menyelesaikan kursus ini.
Computer Vision with Google Colab and TensorFlow
21 HoursPelatihan langsung yang dipimpin instruktur di Indonesia (online atau di tempat) ini ditujukan untuk profesional tingkat lanjut yang ingin memperdalam pemahaman mereka tentang visi komputer dan mengeksplorasi kemampuan TensorFlow dalam mengembangkan model visi canggih menggunakan Google Colab.
Pada akhir pelatihan ini, peserta akan dapat:
- Membangun dan melatih jaringan saraf konvolusional (CNN) menggunakan TensorFlow.
- Manfaatkan Google Colab untuk pengembangan model berbasis cloud yang skalabel dan efisien.
- Menerapkan teknik praproses gambar untuk tugas visi komputer.
- Menerapkan model visi komputer untuk aplikasi dunia nyata.
- Gunakan pembelajaran transfer untuk meningkatkan kinerja model CNN.
- Visualisasikan dan interpretasikan hasil model klasifikasi gambar.
Deep Learning with TensorFlow in Google Colab
14 HoursPelatihan langsung yang dipimpin instruktur di Indonesia (online atau di lokasi) ditujukan untuk data scientist dan developer tingkat menengah yang ingin memahami dan menerapkan teknik pembelajaran mendalam menggunakan lingkungan Google Colab.
Pada akhir pelatihan ini, peserta akan mampu:
- Siapkan dan navigasikan Google Colab untuk proyek pembelajaran mendalam.
- Memahami dasar-dasar jaringan saraf.
- Menerapkan model pembelajaran mendalam menggunakan TensorFlow.
- Melatih dan mengevaluasi model pembelajaran mendalam.
- Manfaatkan fitur lanjutan TensorFlow untuk pembelajaran mendalam.
Deep Learning for NLP (Natural Language Processing)
28 HoursIn this instructor-led, live training in Indonesia, participants will learn to use Python libraries for NLP as they create an application that processes a set of pictures and generates captions.
By the end of this training, participants will be able to:
- Design and code DL for NLP using Python libraries.
- Create Python code that reads a substantially huge collection of pictures and generates keywords.
- Create Python Code that generates captions from the detected keywords.
Deep Learning for Vision
21 HoursAudience
This course is suitable for Deep Learning researchers and engineers interested in utilizing available tools (mostly open source) for analyzing computer images
This course provide working examples.
Fraud Detection with Python and TensorFlow
14 HoursPelatihan langsung yang dipandu oleh instruktur ini, di Indonesia (online atau onsite), ditujukan bagi ilmuwan data yang ingin menggunakan TensorFlow untuk menganalisis data potensi penipuan.
Pada akhir pelatihan ini, peserta akan dapat:
- Membuat model deteksi penipuan di Python dan TensorFlow.
- Membangun regresi linier dan model regresi linier untuk memprediksi penipuan.
- Mengembangkan aplikasi AI end-to-end untuk menganalisis data penipuan.
Deep Learning with TensorFlow 2
21 HoursThis instructor-led, live training in Indonesia (online or onsite) is aimed at developers and data scientists who wish to use Tensorflow 2.x to build predictors, classifiers, generative models, neural networks and so on.
By the end of this training, participants will be able to:
- Install and configure TensorFlow 2.x.
- Understand the benefits of TensorFlow 2.x over previous versions.
- Build deep learning models.
- Implement an advanced image classifier.
- Deploy a deep learning model to the cloud, mobile and IoT devices.
TensorFlow Serving
7 HoursDalam pelatihan yang dipandu instruktur secara langsung di Indonesia (online atau di lokasi), peserta akan belajar cara mengonfigurasi dan menggunakan Tensorflow Serving untuk mendeploy dan mengelola model ML dalam lingkungan produksi.
Selesai pelatihan ini, peserta akan dapat:
- Mentraining, mengekspor, dan menyajikan berbagai model Tensorflow.
- Mengetes dan mendeploy algoritma menggunakan satu arsitektur dan set API.
- Mengembangkan Tensorflow Serving untuk menyajikan jenis model lain selain model Tensorflow.
Deep Learning with TensorFlow
21 HoursTensorFlow is a 2nd Generation API of Google's open source software library for Deep Learning. The system is designed to facilitate research in machine learning, and to make it quick and easy to transition from research prototype to production system.
Audience
This course is intended for engineers seeking to use TensorFlow for their Deep Learning projects
After completing this course, delegates will:
- understand TensorFlow’s structure and deployment mechanisms
- be able to carry out installation / production environment / architecture tasks and configuration
- be able to assess code quality, perform debugging, monitoring
- be able to implement advanced production like training models, building graphs and logging
TensorFlow for Image Recognition
28 HoursThis course explores, with specific examples, the application of Tensor Flow to the purposes of image recognition
Audience
This course is intended for engineers seeking to utilize TensorFlow for the purposes of Image Recognition
After completing this course, delegates will be able to:
- understand TensorFlow’s structure and deployment mechanisms
- carry out installation / production environment / architecture tasks and configuration
- assess code quality, perform debugging, monitoring
- implement advanced production like training models, building graphs and logging
TPU Programming: Building Neural Network Applications on Tensor Processing Units
7 HoursIn this instructor-led, live training in Indonesia, participants will learn how to take advantage of the innovations in TPU processors to maximize the performance of their own AI applications.
By the end of the training, participants will be able to:
- Train various types of neural networks on large amounts of data.
- Use TPUs to speed up the inference process by up to two orders of magnitude.
- Utilize TPUs to process intensive applications such as image search, cloud vision and photos.
Natural Language Processing (NLP) with TensorFlow
35 HoursTensorFlow™ is an open source software library for numerical computation using data flow graphs.
SyntaxNet is a neural-network Natural Language Processing framework for TensorFlow.
Word2Vec is used for learning vector representations of words, called "word embeddings". Word2vec is a particularly computationally-efficient predictive model for learning word embeddings from raw text. It comes in two flavors, the Continuous Bag-of-Words model (CBOW) and the Skip-Gram model (Chapter 3.1 and 3.2 in Mikolov et al.).
Used in tandem, SyntaxNet and Word2Vec allows users to generate Learned Embedding models from Natural Language input.
Audience
This course is targeted at Developers and engineers who intend to work with SyntaxNet and Word2Vec models in their TensorFlow graphs.
After completing this course, delegates will:
- understand TensorFlow’s structure and deployment mechanisms
- be able to carry out installation / production environment / architecture tasks and configuration
- be able to assess code quality, perform debugging, monitoring
- be able to implement advanced production like training models, embedding terms, building graphs and logging
Understanding Deep Neural Networks
35 HoursThis course begins with giving you conceptual knowledge in neural networks and generally in machine learning algorithm, deep learning (algorithms and applications).
Part-1(40%) of this training is more focus on fundamentals, but will help you choosing the right technology : TensorFlow, Caffe, Theano, DeepDrive, Keras, etc.
Part-2(20%) of this training introduces Theano - a python library that makes writing deep learning models easy.
Part-3(40%) of the training would be extensively based on Tensorflow - 2nd Generation API of Google's open source software library for Deep Learning. The examples and handson would all be made in TensorFlow.
Audience
This course is intended for engineers seeking to use TensorFlow for their Deep Learning projects
After completing this course, delegates will:
-
have a good understanding on deep neural networks(DNN), CNN and RNN
-
understand TensorFlow’s structure and deployment mechanisms
-
be able to carry out installation / production environment / architecture tasks and configuration
-
be able to assess code quality, perform debugging, monitoring
-
be able to implement advanced production like training models, building graphs and logging