Jupyter for Data Science Teams Training Course
Jupyter adalah IDE interaktif dan lingkungan komputasi sumber terbuka berbasis web.
Pelatihan langsung yang dipimpin instruktur (online atau di lokasi) ini memperkenalkan gagasan pengembangan kolaboratif dalam ilmu data dan mendemonstrasikan cara menggunakan Jupyter untuk melacak dan berpartisipasi sebagai tim dalam "siklus hidup ide komputasi". Ini memandu peserta melalui pembuatan contoh proyek ilmu data berdasarkan ekosistem Jupyter.
Pada akhir pelatihan ini, peserta akan mampu:
- Instal dan konfigurasikan Jupyter, termasuk pembuatan dan integrasi repositori tim di Git.
- Gunakan fitur Jupyter seperti ekstensi, widget interaktif, mode multipengguna, dan lainnya untuk mengaktifkan kolaborasi proyek.
- Buat, bagikan, dan atur Jupyter Notebooks dengan anggota tim.
- Pilih dari Scala, Python, R, untuk menulis dan mengeksekusi kode terhadap sistem data besar seperti Apache Spark, semuanya melalui antarmuka Jupyter.
Format Kursus
- Ceramah dan diskusi interaktif.
- Banyak latihan dan latihan.
- Implementasi langsung di lingkungan laboratorium langsung.
Opsi Kustomisasi Kursus
- Notebook Jupyter mendukung lebih dari 40 bahasa termasuk R, Python, Scala, Julia, dll. Untuk menyesuaikan kursus ini dengan bahasa pilihan Anda, silakan hubungi kami untuk mengaturnya.
Course Outline
Pengantar Jupyter
- Tinjauan Umum Jupyter dan Ekosistemnya
- Instalasi dan pengaturan
- Mengonfigurasi Jupyter untuk kolaborasi tim
Fitur Kolaboratif
- Menggunakan Git untuk kontrol versi
- Ekstensi dan widget interaktif
- Mode multi-pengguna
Membuat dan Mengelola Buku Catatan
- Struktur dan fungsi notebook
- Berbagi dan mengatur buku catatan
- Praktik terbaik untuk kolaborasi
Programming dengan Jupyter
- Memilih dan menggunakan bahasa pemrograman (Python, R, Scala)
- Menulis dan mengeksekusi kode
- Integrasi dengan sistem data besar (Apache Spark)
Fitur Jupyter Lanjutan
- Menyesuaikan lingkungan Jupyter
- Mengotomatiskan alur kerja dengan Jupyter
- Menjelajahi kasus penggunaan lanjutan
Sesi Praktis
- Laboratorium praktik
- Proyek ilmu data dunia nyata
- Latihan kelompok dan tinjauan sejawat
Ringkasan dan Langkah Berikutnya
Requirements
- Programming pengalaman dalam bahasa seperti Python, R, Scala, dll.
- Latar belakang dalam ilmu data
Hadirin
- Tim ilmu data
Open Training Courses require 5+ participants.
Jupyter for Data Science Teams Training Course - Booking
Jupyter for Data Science Teams Training Course - Enquiry
Jupyter for Data Science Teams - Consultancy Enquiry
Consultancy Enquiry
Testimonials (1)
It is great to have the course custom made to the key areas that I have highlighted in the pre-course questionnaire. This really helps to address the questions that I have with the subject matter and to align with my learning goals.
Winnie Chan - Statistics Canada
Course - Jupyter for Data Science Teams
Upcoming Courses (Minimal 5 peserta)
Related Courses
Introduction to Data Science and AI using Python
35 HoursThis is a 5 day introduction to Data Science and Artificial Intelligence (AI).
The course is delivered with examples and exercises using Python
Anaconda Ecosystem for Data Scientists
14 HoursPelatihan langsung yang dipimpin instruktur di Indonesia (online atau di tempat) ini ditujukan untuk ilmuwan data yang ingin menggunakan ekosistem Anaconda untuk menangkap, mengelola, dan menyebarkan paket dan alur kerja analisis data dalam satu platform.
Pada akhir pelatihan ini, peserta akan dapat:
- Instal dan konfigurasikan Anaconda komponen dan pustaka.
- Memahami konsep inti, fitur, dan manfaat Anaconda.
- Kelola paket, lingkungan, dan saluran menggunakan Anaconda Navigator.
- Gunakan paket Conda, R, dan Python untuk ilmu data dan pembelajaran mesin.
- Ketahui beberapa kasus penggunaan praktis dan teknik untuk mengelola berbagai lingkungan data.
Big Data Business Intelligence for Telecom and Communication Service Providers
35 HoursOverview
Communications service providers (CSP) are facing pressure to reduce costs and maximize average revenue per user (ARPU), while ensuring an excellent customer experience, but data volumes keep growing. Global mobile data traffic will grow at a compound annual growth rate (CAGR) of 78 percent to 2016, reaching 10.8 exabytes per month.
Meanwhile, CSPs are generating large volumes of data, including call detail records (CDR), network data and customer data. Companies that fully exploit this data gain a competitive edge. According to a recent survey by The Economist Intelligence Unit, companies that use data-directed decision-making enjoy a 5-6% boost in productivity. Yet 53% of companies leverage only half of their valuable data, and one-fourth of respondents noted that vast quantities of useful data go untapped. The data volumes are so high that manual analysis is impossible, and most legacy software systems can’t keep up, resulting in valuable data being discarded or ignored.
With Big Data & Analytics’ high-speed, scalable big data software, CSPs can mine all their data for better decision making in less time. Different Big Data products and techniques provide an end-to-end software platform for collecting, preparing, analyzing and presenting insights from big data. Application areas include network performance monitoring, fraud detection, customer churn detection and credit risk analysis. Big Data & Analytics products scale to handle terabytes of data but implementation of such tools need new kind of cloud based database system like Hadoop or massive scale parallel computing processor ( KPU etc.)
This course work on Big Data BI for Telco covers all the emerging new areas in which CSPs are investing for productivity gain and opening up new business revenue stream. The course will provide a complete 360 degree over view of Big Data BI in Telco so that decision makers and managers can have a very wide and comprehensive overview of possibilities of Big Data BI in Telco for productivity and revenue gain.
Course objectives
Main objective of the course is to introduce new Big Data business intelligence techniques in 4 sectors of Telecom Business (Marketing/Sales, Network Operation, Financial operation and Customer Relation Management). Students will be introduced to following:
- Introduction to Big Data-what is 4Vs (volume, velocity, variety and veracity) in Big Data- Generation, extraction and management from Telco perspective
- How Big Data analytic differs from legacy data analytic
- In-house justification of Big Data -Telco perspective
- Introduction to Hadoop Ecosystem- familiarity with all Hadoop tools like Hive, Pig, SPARC –when and how they are used to solve Big Data problem
- How Big Data is extracted to analyze for analytics tool-how Business Analysis’s can reduce their pain points of collection and analysis of data through integrated Hadoop dashboard approach
- Basic introduction of Insight analytics, visualization analytics and predictive analytics for Telco
- Customer Churn analytic and Big Data-how Big Data analytic can reduce customer churn and customer dissatisfaction in Telco-case studies
- Network failure and service failure analytics from Network meta-data and IPDR
- Financial analysis-fraud, wastage and ROI estimation from sales and operational data
- Customer acquisition problem-Target marketing, customer segmentation and cross-sale from sales data
- Introduction and summary of all Big Data analytic products and where they fit into Telco analytic space
- Conclusion-how to take step-by-step approach to introduce Big Data Business Intelligence in your organization
Target Audience
- Network operation, Financial Managers, CRM managers and top IT managers in Telco CIO office.
- Business Analysts in Telco
- CFO office managers/analysts
- Operational managers
- QA managers
A Practical Introduction to Data Science
35 HoursParticipants who complete this training will gain a practical, real-world understanding of Data Science and its related technologies, methodologies and tools.
Participants will have the opportunity to put this knowledge into practice through hands-on exercises. Group interaction and instructor feedback make up an important component of the class.
The course starts with an introduction to elemental concepts of Data Science, then progresses into the tools and methodologies used in Data Science.
Audience
- Developers
- Technical analysts
- IT consultants
Format of the Course
- Part lecture, part discussion, exercises and heavy hands-on practice
Note
- To request a customized training for this course, please contact us to arrange.
Data Science Programme
245 HoursThe explosion of information and data in today’s world is un-paralleled, our ability to innovate and push the boundaries of the possible is growing faster than it ever has. The role of Data Scientist is one of the highest in-demand skills across industry today.
We offer much more than learning through theory; we deliver practical, marketable skills that bridge the gap between the world of academia and the demands of industry.
This 7 week curriculum can be tailored to your specific Industry requirements, please contact us for further information or visit the Nobleprog Institute website
Audience:
This programme is aimed post level graduates as well as anyone with the required pre-requisite skills which will be determined by an assessment and interview.
Delivery:
Delivery of the course will be a mixture of Instructor Led Classroom and Instructor Led Online; typically the 1st week will be 'classroom led', weeks 2 - 6 'virtual classroom' and week 7 back to 'classroom led'.
Data Science for Big Data Analytics
35 HoursBig data is data sets that are so voluminous and complex that traditional data processing application software are inadequate to deal with them. Big data challenges include capturing data, data storage, data analysis, search, sharing, transfer, visualization, querying, updating and information privacy.
Data Science essential for Marketing/Sales professionals
21 HoursThis course is meant for Marketing Sales Professionals who are intending to get deeper into application of data science in Marketing/ Sales. The course provides
detailed coverage of different data science techniques used for “upsale”, “cross-sale”, market segmentation, branding and CLV.
Difference of Marketing and Sales - How is that sales and marketing are different?
In very simplewords, sales can be termed as a process which focuses or targets on individuals or small groups. Marketing on the other hand targets a larger group or the general public. Marketing includes research (identifying needs of the customer), development of products (producing innovative products) and promoting the product (through advertisements) and create awareness about the product among the consumers. As such marketing means generating leads or prospects. Once the product is out in the market, it is the task of the sales person to persuade the customer to buy the product. Sales means converting the leads or prospects into purchases and orders, while marketing is aimed at longer terms, sales pertain to shorter goals.
Kaggle
14 HoursPelatihan langsung yang dipimpin instruktur di Indonesia (online atau di tempat) ini ditujukan untuk ilmuwan data dan pengembang yang ingin belajar dan membangun karier mereka di Data Science menggunakan Kaggle.
Pada akhir pelatihan ini, peserta akan dapat:
- Pelajari tentang ilmu data dan pembelajaran mesin.
- Jelajahi analitik data.
- Pelajari tentang Kaggle dan cara kerjanya.
MATLAB Fundamentals, Data Science & Report Generation
35 HoursPada bagian pertama pelatihan ini, kami membahas dasar-dasar MATLAB dan fungsinya sebagai bahasa dan platform. Termasuk dalam diskusi ini adalah pengenalan MATLAB sintaksis, array dan matriks, visualisasi data, pengembangan skrip, dan prinsip-prinsip berorientasi objek.
Di bagian kedua, kami mendemonstrasikan cara menggunakan MATLAB untuk penambangan data, pembelajaran mesin, dan analisis prediktif. Untuk memberikan peserta perspektif yang jelas dan praktis tentang pendekatan dan kekuatan MATLAB, kami membuat perbandingan antara penggunaan MATLAB dan penggunaan alat lain seperti spreadsheet, C, C++, dan Visual Basic.
Pada bagian ketiga pelatihan, peserta belajar bagaimana menyederhanakan pekerjaan mereka dengan mengotomatiskan pemrosesan data dan pembuatan laporan.
Sepanjang kursus, peserta akan mempraktikkan ide-ide yang dipelajari melalui latihan langsung di lingkungan laboratorium. Di akhir pelatihan, peserta akan memiliki pemahaman menyeluruh tentang kemampuan MATLAB dan akan dapat menggunakannya untuk memecahkan masalah ilmu data di dunia nyata serta menyederhanakan pekerjaan mereka melalui otomatisasi.
Penilaian akan dilakukan sepanjang kursus untuk mengukur kemajuan.
Format Kursus
- Kursus mencakup latihan teoretis dan praktis, termasuk diskusi kasus, pemeriksaan kode sampel, dan implementasi langsung.
Catatan
- Sesi latihan akan didasarkan pada contoh templat laporan data yang telah diatur sebelumnya. Jika Anda memiliki persyaratan khusus, silakan hubungi kami untuk mengaturnya.
Machine Learning for Data Science with Python
21 HoursPelatihan langsung yang dipimpin instruktur di Indonesia (daring atau tatap muka) ini ditujukan untuk analis data tingkat menengah, pengembang, atau calon ilmuwan data yang ingin menerapkan teknik pembelajaran mesin dalam Python untuk mengungkap wawasan, membuat prediksi, dan mempercepat keputusan berbasis data.
Selesai menjalani kursus ini, peserta akan dapat:
- Mengerti dan membedakan paradigma pembelajaran mesin utama.
- Mengeksplorasi teknik pra-pemrosesan data dan metrik evaluasi model.
- Menerapkan algoritma pembelajaran mesin untuk menyelesaikan masalah data dunia nyata.
- Menggunakan perpustakaan Python dan Jupyter notebooks untuk pengembangan praktis.
- Membangun model untuk prediksi, klasifikasi, rekomendasi, dan klastering.
Accelerating Python Pandas Workflows with Modin
14 HoursPelatihan langsung yang dipimpin instruktur di Indonesia (online atau di tempat) ini ditujukan untuk ilmuwan data dan pengembang yang ingin menggunakan Modin untuk membangun dan menerapkan komputasi paralel dengan Pandas untuk analisis data yang lebih cepat.
Pada akhir pelatihan ini, peserta akan dapat:
- Siapkan lingkungan yang diperlukan untuk mulai mengembangkan Pandas alur kerja berskala dengan Modin.
- Memahami fitur, arsitektur, dan keuntungan Modin.
- Ketahui perbedaan antara Modin, Dask, dan Ray.
- Lakukan operasi Pandas lebih cepat dengan Modin.
- Terapkan seluruh API dan fungsi Pandas.
Python Programming for Finance
35 HoursPython adalah bahasa pemrograman yang telah mendapatkan popularitas besar di industri keuangan. Diadopsi oleh bank investasi dan hedge fund terbesar, bahasa ini digunakan untuk membangun berbagai aplikasi keuangan mulai dari program perdagangan inti hingga sistem manajemen risiko.
Dalam pelatihan langsung yang dipimpin oleh instruktur ini, peserta akan mempelajari cara menggunakan Python untuk mengembangkan aplikasi praktis untuk memecahkan sejumlah masalah terkait keuangan tertentu.
Pada akhir pelatihan ini, peserta akan dapat:
- Memahami dasar-dasar bahasa pemrograman Python
- Mengunduh, memasang, dan memelihara alat pengembangan terbaik untuk membuat aplikasi keuangan di Python
- Memilih dan menggunakan paket dan teknik pemrograman Python yang paling sesuai untuk mengatur, memvisualisasikan, dan menganalisis data keuangan dari berbagai sumber (CSV, Excel, database, web, dll.)
- Membangun aplikasi yang memecahkan masalah terkait alokasi aset, analisis risiko, kinerja investasi, dan lainnya
- Memecahkan masalah, mengintegrasikan, menerapkan, dan mengoptimalkan aplikasi Python
Target Peserta
- Pengembang
- Analis
- Quant
Format Kursus
- Sebagian kuliah, sebagian diskusi, latihan, dan praktik langsung yang intensif
Catatan
- Pelatihan ini bertujuan untuk memberikan solusi untuk beberapa masalah utama yang dihadapi oleh para profesional keuangan. Namun, jika Anda memiliki topik, alat, atau teknik tertentu yang ingin Anda tambahkan atau elaborasi lebih lanjut, silakan hubungi kami untuk mengatur.
Python in Data Science
35 HoursThe training course will help the participants prepare for Web Application Development using Python Programming with Data Analytics. Such data visualization is a great tool for Top Management in decision making.
GPU Data Science with NVIDIA RAPIDS
14 HoursPelatihan langsung yang dipimpin instruktur di Indonesia (online atau di lokasi) ditujukan untuk ilmuwan data dan pengembang yang ingin menggunakan RAPIDS untuk membangun alur data, alur kerja, dan visualisasi yang dipercepat GPU, dengan menerapkan algoritme pembelajaran mesin, seperti XGBoost, cuML, dll.
Pada akhir pelatihan ini, peserta akan mampu:
- Siapkan lingkungan pengembangan yang diperlukan untuk membangun model data dengan NVIDIA RAPIDS.
- Memahami fitur, komponen, dan kelebihan RAPIDS.
- Manfaatkan GPU untuk mempercepat jalur data dan analitik ujung ke ujung.
- Menerapkan persiapan data yang dipercepat GPU dan ETL dengan cuDF dan Apache Arrow.
- Pelajari cara melakukan tugas pembelajaran mesin dengan algoritma XGBoost dan cuML.
- Bangun visualisasi data dan jalankan analisis grafik dengan cuXfilter dan cuGraph.
Data Science: Analysis and Presentation
7 HoursLingkungan terintegrasi Sistem Wolfram menjadikannya alat yang efisien untuk menganalisis dan menyajikan data. Kursus ini mencakup aspek Bahasa Wolfram yang relevan dengan analitik, termasuk komputasi statistik, visualisasi, impor dan ekspor data, serta pembuatan laporan otomatis.