CANN for Edge AI Deployment Training Course
Huawei's Ascend CANN toolkit enables powerful AI inference on edge devices such as the Ascend 310. CANN provides essential tools for compiling, optimizing, and deploying models where compute and memory are constrained.
This instructor-led, live training (online or onsite) is aimed at intermediate-level AI developers and integrators who wish to deploy and optimize models on Ascend edge devices using the CANN toolchain.
By the end of this training, participants will be able to:
- Prepare and convert AI models for Ascend 310 using CANN tools.
- Build lightweight inference pipelines using MindSpore Lite and AscendCL.
- Optimize model performance for limited compute and memory environments.
- Deploy and monitor AI applications in real-world edge use cases.
Format of the Course
- Interactive lecture and demonstration.
- Hands-on lab work with edge-specific models and scenarios.
- Live deployment examples on virtual or physical edge hardware.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Course Outline
Introduction to Edge AI and Ascend 310
- Overview of Edge AI: trends, constraints, and applications
- Huawei Ascend 310 chip architecture and supported toolchain
- Positioning CANN within the edge AI deployment stack
Model Preparation and Conversion
- Exporting trained models from TensorFlow, PyTorch, and MindSpore
- Using ATC to convert models to OM format for Ascend devices
- Handling unsupported ops and lightweight conversion strategies
Developing Inference Pipelines with AscendCL
- Using the AscendCL API to run OM models on Ascend 310
- Input/output preprocessing, memory handling, and device control
- Deploying within embedded containers or lightweight runtime environments
Optimization for Edge Constraints
- Reducing model size, precision tuning (FP16, INT8)
- Using the CANN profiler to identify bottlenecks
- Managing memory layout and data streaming for performance
Deploying with MindSpore Lite
- Using MindSpore Lite runtime for mobile and embedded targets
- Comparing MindSpore Lite with raw AscendCL pipeline
- Packaging inference models for device-specific deployment
Edge Deployment Scenarios and Case Studies
- Case study: smart camera with object detection model on Ascend 310
- Case study: real-time classification in an IoT sensor hub
- Monitoring and updating deployed models at the edge
Summary and Next Steps
Requirements
- Experience with AI model development or deployment workflows
- Basic knowledge of embedded systems, Linux, and Python
- Familiarity with deep learning frameworks such as TensorFlow or PyTorch
Audience
- IoT solution developers
- Embedded AI engineers
- Edge system integrators and AI deployment specialists
Open Training Courses require 5+ participants.
CANN for Edge AI Deployment Training Course - Booking
CANN for Edge AI Deployment Training Course - Enquiry
CANN for Edge AI Deployment - Consultancy Enquiry
Consultancy Enquiry
Upcoming Courses (Minimal 5 peserta)
Related Courses
Advanced Edge AI Techniques
14 HoursPelatihan langsung yang dipimpin instruktur di Indonesia (online atau di lokasi) ditujukan untuk praktisi, peneliti, dan pengembang AI tingkat lanjut yang ingin menguasai kemajuan terbaru dalam Edge AI, mengoptimalkan model AI mereka untuk penerapan edge, dan mengeksplorasi aplikasi khusus di berbagai industri.
Pada akhir pelatihan ini, peserta akan mampu:
- Jelajahi teknik tingkat lanjut dalam pengembangan dan pengoptimalan model Edge AI.
- Menerapkan strategi mutakhir untuk menerapkan model AI pada perangkat edge.
- Memanfaatkan alat dan kerangka kerja khusus untuk aplikasi Edge AI tingkat lanjut.
- Mengoptimalkan kinerja dan efisiensi solusi Edge AI.
- Jelajahi kasus penggunaan inovatif dan tren yang muncul di Edge AI.
- Mengatasi pertimbangan etika dan keamanan tingkat lanjut dalam penerapan Edge AI.
Developing AI Applications with Huawei Ascend and CANN
21 HoursHuawei Ascend adalah keluarga prosesor AI yang dirancang untuk inferensi dan pelatihan berkinerja tinggi.
Latihan langsung ini (daring atau di lokasi) ditujukan bagi insinyur AI tingkat menengah dan ilmuwan data yang ingin mengembangkan dan memperbaiki model jaringan saraf menggunakan platform Ascend Huawei dan toolkit CANN.
Selesai latihan ini, peserta akan dapat:
- Mengatur dan konfigurasi lingkungan pengembangan CANN.
- Mengembangkan aplikasi AI menggunakan MindSpore dan aliran kerja CloudMatrix.
- Memaksimalkan kinerja pada Ascend NPU dengan operator kustom dan tiling.
- Mendeploy model ke lingkungan tepi atau cloud.
Format Kursus
- Lecture interaktif dan diskusi.
- Penggunaan langsung Huawei Ascend dan toolkit CANN dalam aplikasi contoh.
- Latihan terarah yang fokus pada pembangunan model, pelatihan, dan deploy.
Opsi Kustomisasi Kursus
- Jika Anda ingin meminta latihan khusus untuk kursus ini berdasarkan infrastruktur atau dataset Anda, silakan hubungi kami untuk mengatur.
Deploying AI Models with CANN and Ascend AI Processors
14 HoursCANN (Compute Architecture for Neural Networks) is Huawei’s AI compute stack for deploying and optimizing AI models on Ascend AI processors.
This instructor-led, live training (online or onsite) is aimed at intermediate-level AI developers and engineers who wish to deploy trained AI models efficiently to Huawei Ascend hardware using the CANN toolkit and tools such as MindSpore, TensorFlow, or PyTorch.
By the end of this training, participants will be able to:
- Understand the CANN architecture and its role in the AI deployment pipeline.
- Convert and adapt models from popular frameworks to Ascend-compatible formats.
- Use tools like ATC, OM model conversion, and MindSpore for edge and cloud inference.
- Diagnose deployment issues and optimize performance on Ascend hardware.
Format of the Course
- Interactive lecture and demonstration.
- Hands-on lab work using CANN tools and Ascend simulators or devices.
- Practical deployment scenarios based on real-world AI models.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Building AI Solutions on the Edge
14 HoursPelatihan langsung yang dipimpin instruktur di Indonesia (online atau di lokasi) ini ditujukan untuk pengembang tingkat menengah, ilmuwan data, dan penggemar teknologi yang ingin memperoleh keterampilan praktis dalam menerapkan model AI pada perangkat edge untuk berbagai aplikasi.
Pada akhir pelatihan ini, peserta akan mampu:
- Memahami prinsip-prinsip Edge AI dan manfaatnya.
- Menyiapkan dan mengonfigurasi lingkungan komputasi edge.
- Kembangkan, latih, dan optimalkan model AI untuk penerapan edge.
- Menerapkan solusi AI praktis pada perangkat edge.
- Evaluasi dan tingkatkan performa model yang diterapkan di edge.
- Mengatasi pertimbangan etika dan keamanan dalam aplikasi Edge AI.
Introduction to CANN for AI Framework Developers
7 HoursCANN (Compute Architecture for Neural Networks) is Huawei’s AI computing toolkit used to compile, optimize, and deploy AI models on Ascend AI processors.
This instructor-led, live training (online or onsite) is aimed at beginner-level AI developers who wish to understand how CANN fits into the model lifecycle from training to deployment, and how it works with frameworks like MindSpore, TensorFlow, and PyTorch.
By the end of this training, participants will be able to:
- Understand the purpose and architecture of the CANN toolkit.
- Set up a development environment with CANN and MindSpore.
- Convert and deploy a simple AI model to Ascend hardware.
- Gain foundational knowledge for future CANN optimization or integration projects.
Format of the Course
- Interactive lecture and discussion.
- Hands-on labs with simple model deployment.
- Step-by-step walkthrough of the CANN toolchain and integration points.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Understanding Huawei’s AI Compute Stack: From CANN to MindSpore
14 HoursHuawei’s AI stack — from the low-level CANN SDK to the high-level MindSpore framework — offers a tightly integrated AI development and deployment environment optimized for Ascend hardware.
This instructor-led, live training (online or onsite) is aimed at beginner-level to intermediate-level technical professionals who wish to understand how the CANN and MindSpore components work together to support AI lifecycle management and infrastructure decisions.
By the end of this training, participants will be able to:
- Understand the layered architecture of Huawei’s AI compute stack.
- Identify how CANN supports model optimization and hardware-level deployment.
- Evaluate the MindSpore framework and toolchain in relation to industry alternatives.
- Position Huawei's AI stack within enterprise or cloud/on-prem environments.
Format of the Course
- Interactive lecture and discussion.
- Live system demos and case-based walkthroughs.
- Optional guided labs on model flow from MindSpore to CANN.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Optimizing Neural Network Performance with CANN SDK
14 HoursCANN SDK (Compute Architecture for Neural Networks) is Huawei’s AI compute foundation that allows developers to fine-tune and optimize the performance of deployed neural networks on Ascend AI processors.
This instructor-led, live training (online or onsite) is aimed at advanced-level AI developers and system engineers who wish to optimize inference performance using CANN’s advanced toolset, including the Graph Engine, TIK, and custom operator development.
By the end of this training, participants will be able to:
- Understand CANN's runtime architecture and performance lifecycle.
- Use profiling tools and Graph Engine for performance analysis and optimization.
- Create and optimize custom operators using TIK and TVM.
- Resolve memory bottlenecks and improve model throughput.
Format of the Course
- Interactive lecture and discussion.
- Hands-on labs with real-time profiling and operator tuning.
- Optimization exercises using edge-case deployment examples.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
CANN SDK for Computer Vision and NLP Pipelines
14 HoursThe CANN SDK (Compute Architecture for Neural Networks) provides powerful deployment and optimization tools for real-time AI applications in computer vision and NLP, especially on Huawei Ascend hardware.
This instructor-led, live training (online or onsite) is aimed at intermediate-level AI practitioners who wish to build, deploy, and optimize vision and language models using the CANN SDK for production use cases.
By the end of this training, participants will be able to:
- Deploy and optimize CV and NLP models using CANN and AscendCL.
- Use CANN tools to convert models and integrate them into live pipelines.
- Optimize inference performance for tasks like detection, classification, and sentiment analysis.
- Build real-time CV/NLP pipelines for edge or cloud-based deployment scenarios.
Format of the Course
- Interactive lecture and demonstration.
- Hands-on lab with model deployment and performance profiling.
- Live pipeline design using real CV and NLP use cases.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Building Custom AI Operators with CANN TIK and TVM
14 HoursCANN TIK (Tensor Instruction Kernel) and Apache TVM enable advanced optimization and customization of AI model operators for Huawei Ascend hardware.
This instructor-led, live training (online or onsite) is aimed at advanced-level system developers who wish to build, deploy, and tune custom operators for AI models using CANN’s TIK programming model and TVM compiler integration.
By the end of this training, participants will be able to:
- Write and test custom AI operators using the TIK DSL for Ascend processors.
- Integrate custom ops into the CANN runtime and execution graph.
- Use TVM for operator scheduling, auto-tuning, and benchmarking.
- Debug and optimize instruction-level performance for custom computation patterns.
Format of the Course
- Interactive lecture and demonstration.
- Hands-on coding of operators using TIK and TVM pipelines.
- Testing and tuning on Ascend hardware or simulators.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Edge AI in Autonomous Systems
14 HoursPelatihan langsung yang dipimpin instruktur di Indonesia (online atau di lokasi) ini ditujukan untuk insinyur robotika tingkat menengah, pengembang kendaraan otonom, dan peneliti AI yang ingin memanfaatkan Edge AI untuk solusi sistem otonom yang inovatif.
Pada akhir pelatihan ini, peserta akan mampu:
- Memahami peran dan manfaat Edge AI dalam sistem otonom.
- Kembangkan dan terapkan model AI untuk pemrosesan real-time di perangkat edge.
- Menerapkan solusi Edge AI pada kendaraan otonom, drone, dan robotika.
- Rancang dan optimalkan sistem kontrol menggunakan Edge AI.
- Mengatasi pertimbangan etika dan peraturan dalam aplikasi AI otonom.
Edge AI: From Concept to Implementation
14 HoursPelatihan langsung yang dipimpin instruktur di Indonesia (online atau di lokasi) ini ditujukan untuk pengembang tingkat menengah dan profesional TI yang ingin mendapatkan pemahaman komprehensif tentang Edge AI mulai dari konsep hingga implementasi praktis, termasuk penyiapan dan penerapan.
Pada akhir pelatihan ini, peserta akan mampu:
- Memahami konsep dasar Edge AI.
- Menyiapkan dan mengonfigurasi lingkungan Edge AI.
- Kembangkan, latih, dan optimalkan model Edge AI.
- Menyebarkan dan mengelola aplikasi Edge AI.
- Integrasikan Edge AI dengan sistem dan alur kerja yang ada.
- Mengatasi pertimbangan etis dan praktik terbaik dalam penerapan Edge AI.
Edge AI for Healthcare
14 HoursPelatihan langsung yang dipimpin instruktur di Indonesia (online atau di lokasi) ini ditujukan untuk profesional kesehatan tingkat menengah, insinyur biomedis, dan pengembang AI yang ingin memanfaatkan Edge AI untuk solusi perawatan kesehatan yang inovatif.
Pada akhir pelatihan ini, peserta akan mampu:
- Pahami peran dan manfaat Edge AI dalam layanan kesehatan.
- Mengembangkan dan menerapkan model AI pada perangkat edge untuk aplikasi perawatan kesehatan.
- Menerapkan solusi Edge AI pada perangkat wearable dan alat diagnostik.
- Rancang dan terapkan sistem pemantauan pasien menggunakan Edge AI.
- Mengatasi pertimbangan etika dan peraturan dalam aplikasi AI perawatan kesehatan.
Edge AI for IoT Applications
14 HoursPelatihan langsung yang dipimpin instruktur di Indonesia (online atau di lokasi) ini ditujukan untuk pengembang tingkat menengah, arsitek sistem, dan profesional industri yang ingin memanfaatkan Edge AI untuk meningkatkan aplikasi IoT dengan kemampuan pemrosesan dan analitik data yang cerdas.
Pada akhir pelatihan ini, peserta akan mampu:
- Memahami dasar-dasar Edge AI dan penerapannya di IoT.
- Menyiapkan dan mengonfigurasi lingkungan Edge AI untuk perangkat IoT.
- Mengembangkan dan menerapkan model AI pada perangkat edge untuk aplikasi IoT.
- Menerapkan pemrosesan data dan pengambilan keputusan secara real-time dalam sistem IoT.
- Integrasikan Edge AI dengan berbagai protokol dan platform IoT.
- Mengatasi pertimbangan etis dan praktik terbaik di Edge AI untuk IoT.
Introduction to Edge AI
14 HoursPelatihan langsung yang dipimpin instruktur di Indonesia (online atau di lokasi) ini ditujukan untuk pengembang tingkat pemula dan profesional TI yang ingin memahami dasar-dasar Edge AI dan aplikasi pendahuluannya.
Pada akhir pelatihan ini, peserta akan mampu:
- Memahami konsep dasar dan arsitektur Edge AI.
- Menyiapkan dan mengonfigurasi lingkungan Edge AI.
- Kembangkan dan terapkan aplikasi Edge AI sederhana.
- Identifikasi dan pahami kasus penggunaan dan manfaat Edge AI.
Security and Privacy in Edge AI
14 HoursPelatihan langsung yang dipimpin instruktur di Indonesia (online atau di lokasi) ini ditujukan untuk profesional keamanan siber tingkat menengah, administrator sistem, dan peneliti etika AI yang ingin mengamankan dan menerapkan solusi Edge AI secara etis.
Pada akhir pelatihan ini, peserta akan mampu:
- Pahami tantangan keamanan dan privasi di Edge AI.
- Menerapkan praktik terbaik untuk mengamankan perangkat dan data edge.
- Kembangkan strategi untuk memitigasi risiko keamanan dalam penerapan Edge AI.
- Menangani pertimbangan etis dan memastikan kepatuhan terhadap peraturan.
- Melakukan penilaian keamanan dan audit untuk aplikasi Edge AI.