
Online or onsite, instructor-led live Artificial Intelligence (AI) training courses demonstrate through hands-on practice how to implement AI solutions for solving real-world problems.
AI training is available as "online live training" or "onsite live training". Online live training (aka "remote live training") is carried out by way of an interactive, remote desktop. Indonesia onsite live Artificial Intelligence (AI) trainings can be carried out locally on customer premises or in NobleProg corporate training centers.
NobleProg -- Your Local Training Provider
Testimonials
He was very informative and helpful.
Pratheep Ravy
Course: Predictive Modelling with R
It was very interactive and more relaxed and informal than expected. We covered lots of topics in the time and the trainer was always receptive to talking more in detail or more generally about the topics and how they were related. I feel the training has given me the tools to continue learning as opposed to it being a one off session where learning stops once you've finished which is very important given the scale and complexity of the topic.
Jonathan Blease
Course: Artificial Neural Networks, Machine Learning, Deep Thinking
Ann created a great environment to ask questions and learn. We had a lot of fun and also learned a lot at the same time.
Gudrun Bickelq
Course: Introduction to the use of neural networks
The interactive part, tailored to our specific needs.
Thomas Stocker
Course: Introduction to the use of neural networks
I did like the exercises.
Office for National Statistics
Course: Natural Language Processing with Python
I genuinely enjoyed the hands-on approach.
Kevin De Cuyper
Course: Computer Vision with OpenCV
The trainer was so knowledgeable and included areas I was interested in.
Mohamed Salama
Course: Data Mining & Machine Learning with R
The topic is very interesting.
Wojciech Baranowski
Course: Introduction to Deep Learning
Trainers theoretical knowledge and willingness to solve the problems with the participants after the training.
Grzegorz Mianowski
Course: Introduction to Deep Learning
Topic. Very interesting!.
Piotr
Course: Introduction to Deep Learning
Exercises after each topic were really helpful, despite there were too complicated at the end. In general, the presented material was very interesting and involving! Exercises with image recognition were great.
Dolby Poland Sp. z o.o.
Course: Introduction to Deep Learning
I think that if training would be done in polish it would allow the trainer to share his knowledge more efficient.
Radek
Course: Introduction to Deep Learning
The global overview of deep learning.
Bruno Charbonnier
Course: Advanced Deep Learning
The exercises are sufficiently practical and do not need high knowledge in Python to be done.
Alexandre GIRARD
Course: Advanced Deep Learning
Doing exercises on real examples using Eras. Italy totally understood our expectations about this training.
Paul Kassis
Course: Advanced Deep Learning
I really appreciated the crystal clear answers of Chris to our questions.
Léo Dubus
Course: Réseau de Neurones, les Fondamentaux en utilisant TensorFlow comme Exemple
I generally enjoyed the knowledgeable trainer.
Sridhar Voorakkara
Course: Neural Networks Fundamentals using TensorFlow as Example
I was amazed at the standard of this class - I would say that it was university standard.
David Relihan
Course: Neural Networks Fundamentals using TensorFlow as Example
Very good all round overview. Good background into why Tensorflow operates as it does.
Kieran Conboy
Course: Neural Networks Fundamentals using TensorFlow as Example
I liked the opportunities to ask questions and get more in depth explanations of the theory.
Sharon Ruane
Course: Neural Networks Fundamentals using TensorFlow as Example
We have gotten a lot more insight in to the subject matter. Some nice discussion were made with some real subjects within our company.
Sebastiaan Holman
Course: Machine Learning and Deep Learning
The training provided the right foundation that allows us to further to expand on, by showing how theory and practice go hand in hand. It actually got me more interested in the subject than I was before.
Jean-Paul van Tillo
Course: Machine Learning and Deep Learning
I really enjoyed the coverage and depth of topics.
Anirban Basu
Course: Machine Learning and Deep Learning
I liked the new insights in deep machine learning.
Josip Arneric
Course: Neural Network in R
We gained some knowledge about NN in general, and what was the most interesting for me were the new types of NN that are popular nowadays.
Tea Poklepovic
Course: Neural Network in R
I mostly enjoyed the graphs in R :))).
Faculty of Economics and Business Zagreb
Course: Neural Network in R
The deep knowledge of the trainer about the topic.
Sebastian Görg
Course: Introduction to Deep Learning
Very updated approach or CPI (tensor flow, era, learn) to do machine learning.
Paul Lee
Course: TensorFlow for Image Recognition
Very flexible.
Frank Ueltzhöffer
Course: Artificial Neural Networks, Machine Learning and Deep Thinking
I generally enjoyed the flexibility.
Werner Philipp
Course: Artificial Neural Networks, Machine Learning and Deep Thinking
Given outlook of the technology: what technology/process might become more important in the future; see, what the technology can be used for.
Commerzbank AG
Course: Neural Networks Fundamentals using TensorFlow as Example
I was benefit from topic selection. Style of training. Practice orientation.
Commerzbank AG
Course: Neural Networks Fundamentals using TensorFlow as Example
In-depth coverage of machine learning topics, particularly neural networks. Demystified a lot of the topic.
Sacha Nandlall
Course: Python for Advanced Machine Learning
This is one of the best hands-on with exercises programming courses I have ever taken.
Laura Kahn
Course: Artificial Intelligence - the most applied stuff - Data Analysis + Distributed AI + NLP
This is one of the best quality online training I have ever taken in my 13 year career. Keep up the great work!.
Course: Artificial Intelligence - the most applied stuff - Data Analysis + Distributed AI + NLP
Richard's training style kept it interesting, the real world examples used helped to drive the concepts home.
Jamie Martin-Royle - NBrown Group
Course: From Data to Decision with Big Data and Predictive Analytics
The content, as I found it very interesting and think it would help me in my final year at University.
Krishan Mistry - NBrown Group
Course: From Data to Decision with Big Data and Predictive Analytics
I genuinely liked excercises
L M ERICSSON LIMITED
Course: Machine Learning
I liked the lab exercises.
Marcell Lorant - L M ERICSSON LIMITED
Course: Machine Learning
The Jupyter notebook form, in which the training material is available
L M ERICSSON LIMITED
Course: Machine Learning
There were many exercises and interesting topics.
L M ERICSSON LIMITED
Course: Machine Learning
Some great lab exercises analyzed and explained by the trainer in depth (e.g. covariants in linear regression, matching the real function)
L M ERICSSON LIMITED
Course: Machine Learning
It's just great that all material including the exercises is on the same page and then it gets updated on the fly. The solution is revealed at the end. Cool! Also, I do appreciate that Krzysztof took extra effort to understand our problems and suggested us possible techniques.
Attila Nagy - L M ERICSSON LIMITED
Course: Machine Learning
The easy use of the VideoCapture functionality to acquire video images from laptop camera.
HP Printing and Computing Solutions, Sociedad Limitada Unipe
Course: Computer Vision with OpenCV
I enjoyed the advises given by the trainer about how to use the tools. This is something that can't be got from the internet and are very useful.
HP Printing and Computing Solutions, Sociedad Limitada Unipe
Course: Computer Vision with OpenCV
I enjoyed the advises given by the trainer about how to use the tools. This is something that can't be got from the internet and are very useful.
HP Printing and Computing Solutions, Sociedad Limitada Unipe
Course: Computer Vision with OpenCV
It was easy to follow.
HP Printing and Computing Solutions, Sociedad Limitada Unipe
Course: Computer Vision with OpenCV
the matter was well presented and in an orderly manner.
Marylin Houle - Ivanhoe Cambridge
Course: Introduction to R with Time Series Analysis
I was benefit from the passion to teach and focusing on making thing sensible.
Zaher Sharifi - GOSI
Course: Advanced Deep Learning
It is one on one. I can ask a lot of question and also ask the trainner to repeat when I was not clear about some stuff.
Course: Insurtech: A Practical Introduction for Managers
This is one of the best quality online training I have ever taken in my 13 year career. Keep up the great work!.
Course: Artificial Intelligence - the most applied stuff - Data Analysis + Distributed AI + NLP
It is one on one. I can ask a lot of question and also ask the trainner to repeat when I was not clear about some stuff.
Course: Insurtech: A Practical Introduction for Managers
AI (Artificial Intelligence) Subcategories in Indonesia
AI Course Outlines in Indonesia
Audience
This course is directed at engineers and architects seeking to utilize OpenCV for computer vision projects
By the end of this training, participants will be able to:
- View, load, and classify images and videos using OpenCV 4.
- Implement deep learning in OpenCV 4 with TensorFlow and Keras.
- Run deep learning models and generate impactful reports from images and videos.
In this instructor-led, live training, participants will learn how to use OpenFace's components to create and deploy a sample facial recognition application.
By the end of this training, participants will be able to:
- Work with OpenFace's components, including dlib, OpenVC, Torch, and nn4 to implement face detection, alignment, and transformation
- Apply OpenFace to real-world applications such as surveillance, identity verification, virtual reality, gaming, and identifying repeat customers, etc.
Audience
- Developers
- Data scientists
Format of the course
- Part lecture, part discussion, exercises and heavy hands-on practice
In this instructor-led, live training, participants will learn how to create models for processing text based data using OpenNLP. Sample training data as well customized data sets will be used as the basis for the lab exercises.
By the end of this training, participants will be able to:
- Install and configure OpenNLP
- Download existing models as well as create their own
- Train the models on various sets of sample data
- Integrate OpenNLP with existing Java applications
Audience
- Developers
- Data scientists
Format of the course
- Part lecture, part discussion, exercises and heavy hands-on practice
By the end of this training, participants will have the knowledge and practice needed to implement a live OpenNMT solution.
Source and target language samples will be pre-arranged per the audience's requirements.
Format of the Course
- Part lecture, part discussion, heavy hands-on practice
Format of the course
- Lecture and discussion coupled with hands-on exercises.
In this instructor-led, live training, participants will learn how to use PaddlePaddle to enable deep learning in their product and service applications.
By the end of this training, participants will be able to:
- Set up and configure PaddlePaddle
- Set up a Convolutional Neural Network (CNN) for image recognition and object detection
- Set up a Recurrent Neural Network (RNN) for sentiment analysis
- Set up deep learning on recommendation systems to help users find answers
- Predict click-through rates (CTR), classify large-scale image sets, perform optical character recognition(OCR), rank searches, detect computer viruses, and implement a recommendation system.
Audience
- Developers
- Data scientists
Format of the course
- Part lecture, part discussion, exercises and heavy hands-on practice
Format of the Course
- This course introduces the approaches, technologies and algorithms used in the field of pattern matching as it applies to Machine Vision.
Audience
This course is directed at developers and data scientists who want to create predictive engines for any machine learning task.
By the end of this training, participants will be able to:
- Perform data wrangling in Python.
- Conduct ETL operations for machine learning.
- Create data visualizations with Pandas
By the end of this training, participants will be able to:
- Implement machine learning algorithms and techniques for solving complex problems.
- Apply deep learning and semi-supervised learning to applications involving image, music, text, and financial data.
- Push Python algorithms to their maximum potential.
- Use libraries and packages such as NumPy and Theano.
In this instructor-led, live training, participants will learn the basics of Computer Vision as they step through the creation of set of simple Computer Vision application using Python.
By the end of this training, participants will be able to:
- Understand the basics of Computer Vision
- Use Python to implement Computer Vision tasks
- Build their own face, object, and motion detection systems
Audience
- Python programmers interested in Computer Vision
Format of the course
- Part lecture, part discussion, exercises and heavy hands-on practice
By the end of this training, participants will be able to:
- Solve text-based data science problems with high-quality, reusable code
- Apply different aspects of scikit-learn (classification, clustering, regression, dimensionality reduction) to solve problems
- Build effective machine learning models using text-based data
- Create a dataset and extract features from unstructured text
- Visualize data with Matplotlib
- Build and evaluate models to gain insight
- Troubleshoot text encoding errors
Audience
- Developers
- Data Scientists
Format of the course
- Part lecture, part discussion, exercises and heavy hands-on practice
This instructor-led, live course centers around extracting insights and meaning from this data. Utilizing the R Language and Natural Language Processing (NLP) libraries, we combine concepts and techniques from computer science, artificial intelligence, and computational linguistics to algorithmically understand the meaning behind text data. Data samples are available in various languages per customer requirements.
By the end of this training participants will be able to prepare data sets (large and small) from disparate sources, then apply the right algorithms to analyze and report on its significance.
Format of the Course
- Part lecture, part discussion, heavy hands-on practice, occasional tests to gauge understanding
In this instructor-led, live training, participants will learn how to apply machine learning techniques and tools for solving real-world problems in the finance industry. R will be used as the programming language.
Participants first learn the key principles, then put their knowledge into practice by building their own machine learning models and using them to complete a number of team projects.
By the end of this training, participants will be able to:
- Understand the fundamental concepts in machine learning
- Learn the applications and uses of machine learning in finance
- Develop their own algorithmic trading strategy using machine learning with R
Audience
- Developers
- Data scientists
Format of the course
- Part lecture, part discussion, exercises and heavy hands-on practice
By the end of this training, participants will be able to:
- Install and configure MLflow and related ML libraries and frameworks.
- Appreciate the importance of trackability, reproducability and deployability of an ML model
- Deploy ML models to different public clouds, platforms, or on-premise servers.
- Scale the ML deployment process to accommodate multiple users collaborating on a project.
- Set up a central registry to experiment with, reproduce, and deploy ML models.
Our goal is to give you the skills to understand and use the most fundamental tools from the Machine Learning toolbox confidently and avoid the common pitfalls of Data Sciences applications.
Our goal is to give you the skills to understand and use the most fundamental tools from the Machine Learning toolbox confidently and avoid the common pitfalls of Data Sciences applications.
Our goal is to give you the skills to understand and use the most fundamental tools from the Machine Learning toolbox confidently and avoid the common pitfalls of Data Sciences applications.
Audience
Data scientists and statisticians that have some familiarity with machine learning and know how to program R. The emphasis of this course is on the practical aspects of data/model preparation, execution, post hoc analysis and visualization. The purpose is to give a practical introduction to machine learning to participants interested in applying the methods at work
Sector specific examples are used to make the training relevant to the audience.
By the end of this training, participants will be able to:
- Create a mobile app capable of image processing, text analysis and speech recognition
- Access pre-trained ML models for integration into iOS apps
- Create a custom ML model
- Add Siri Voice support to iOS apps
- Understand and use frameworks such as coreML, Vision, CoreGraphics, and GamePlayKit
- Use languages and tools such as Python, Keras, Caffee, Tensorflow, sci-kit learn, libsvm, Anaconda, and Spyder
Audience
- Developers
Format of the course
- Part lecture, part discussion, exercises and heavy hands-on practice
By the end of this training, participants will be able to:
- Install and configure various MLOps frameworks and tools.
- Assemble the right kind of team with the right skills for constructing and supporting an MLOps system.
- Prepare, validate and version data for use by ML models.
- Understand the components of an ML Pipeline and the tools needed to build one.
- Experiment with different machine learning frameworks and servers for deploying to production.
- Operationalize the entire Machine Learning process so that it's reproduceable and maintainable.