Smart Robotics in Manufacturing: AI for Perception, Planning, and Control Training Course
Smart Robotics is the integration of artificial intelligence into robotic systems for improved perception, decision-making, and autonomous control.
This instructor-led, live training (online or onsite) is aimed at advanced-level robotics engineers, systems integrators, and automation leads who wish to implement AI-driven perception, planning, and control in smart manufacturing environments.
By the end of this training, participants will be able to:
- Understand and apply AI techniques for robotic perception and sensor fusion.
- Develop motion planning algorithms for collaborative and industrial robots.
- Deploy learning-based control strategies for real-time decision making.
- Integrate intelligent robotic systems into smart factory workflows.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Course Outline
Introduction to Smart Robotics and AI Integration
- Overview of robotics in Industry 4.0
- AI’s role in perception, planning, and control
- Software and simulation environments
Perception Systems and Sensor Fusion
- Computer vision for robotics (2D/3D cameras, LiDAR)
- Sensor calibration and fusion techniques
- Object detection and environment mapping
Deep Learning for Perception
- Neural networks for visual recognition
- Using TensorFlow or PyTorch with robotic data
- Training perception models for object tracking
Motion Planning and Path Optimization
- Sampling-based and optimization-based planning
- Working with MoveIt for motion planning
- Collision avoidance and dynamic re-planning
Learning-Based Control Strategies
- Reinforcement learning for robotic control
- Integrating AI into low-level control loops
- Simulation with OpenAI Gym and Gazebo
Collaborative Robots (Cobots) in Smart Manufacturing
- Safety standards and human-robot collaboration
- Programming and integrating cobots with AI
- Adaptive behaviors and real-time responsiveness
System Integration and Deployment
- Interfacing with industrial controllers (PLC, SCADA)
- Edge AI deployment for real-time robotics
- Data logging, monitoring, and troubleshooting
Summary and Next Steps
Requirements
- An understanding of robotic systems and kinematics
- Experience with Python programming
- Familiarity with AI or machine learning concepts
Audience
- Robotics engineers
- Systems integrators
- Automation leads
Open Training Courses require 5+ participants.
Smart Robotics in Manufacturing: AI for Perception, Planning, and Control Training Course - Booking
Smart Robotics in Manufacturing: AI for Perception, Planning, and Control Training Course - Enquiry
Smart Robotics in Manufacturing: AI for Perception, Planning, and Control - Consultancy Enquiry
Consultancy Enquiry
Upcoming Courses (Minimal 5 peserta)
Related Courses
AI-Powered Predictive Maintenance for Industrial Systems
14 HoursAI-powered predictive maintenance applies machine learning and data analytics to forecast equipment failures and optimize maintenance schedules. It transforms reactive maintenance models into proactive strategies, enabling better uptime, cost reduction, and asset longevity.
This instructor-led, live training (online or onsite) is aimed at intermediate-level professionals who wish to implement AI-driven predictive maintenance solutions in industrial environments.
By the end of this training, participants will be able to:
- Understand how predictive maintenance differs from reactive and preventive maintenance strategies.
- Collect and structure machine data for AI-powered analysis.
- Apply machine learning models to detect anomalies and predict failures.
- Implement end-to-end workflows from sensor data to actionable insights.
Format of the Course
- Interactive lecture and discussion.
- Hands-on exercises and case studies.
- Live demonstration and practical data workflows.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
AI for Process Optimization in Manufacturing Operations
21 HoursAI for Process Optimization is the application of machine learning and data analytics to enhance efficiency, quality, and throughput in manufacturing operations.
This instructor-led, live training (online or onsite) is aimed at intermediate-level manufacturing professionals who wish to apply AI techniques to streamline operations, reduce downtime, and support continuous improvement initiatives.
By the end of this training, participants will be able to:
- Understand AI concepts relevant to manufacturing optimization.
- Collect and prepare production data for analysis.
- Apply machine learning models to identify bottlenecks and predict failures.
- Visualize and interpret results to support data-driven decisions.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
AI for Quality Control and Assurance in Production Lines
21 HoursAI for Quality Control is the use of computer vision and machine learning techniques to identify defects, anomalies, and deviations in production processes.
This instructor-led, live training (online or onsite) is aimed at beginner-level to intermediate-level quality professionals who wish to apply AI tools to automate inspections and improve product quality in manufacturing environments.
By the end of this training, participants will be able to:
- Understand how AI is applied in industrial quality control.
- Collect and label image or sensor data from production lines.
- Use machine learning and computer vision to detect defects.
- Develop simple AI models for anomaly detection and yield forecasting.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
AI for Supply Chain and Manufacturing Logistics
21 HoursAI in Supply Chain and Manufacturing Logistics is the application of predictive analytics, machine learning, and automation to optimize inventory, routing, and demand forecasting.
This instructor-led, live training (online or onsite) is aimed at intermediate-level supply chain professionals who wish to apply AI-driven tools to enhance logistics performance, forecast demand accurately, and automate warehouse and transport operations.
By the end of this training, participants will be able to:
- Understand how AI is applied across logistics and supply chain activities.
- Use machine learning models for demand forecasting and inventory control.
- Analyze routes and optimize transport using AI-based techniques.
- Automate decision-making in warehouses and fulfillment processes.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Introduction to AI in Smart Factories and Industrial Automation
14 HoursAI in Smart Factories is the application of artificial intelligence to automate, monitor, and optimize industrial operations in real time.
This instructor-led, live training (online or onsite) is aimed at beginner-level decision-makers and technical leads who wish to gain a strategic and practical introduction to how AI can be leveraged in smart factory environments.
By the end of this training, participants will be able to:
- Understand the core principles of AI and machine learning.
- Identify key AI use cases in manufacturing and automation.
- Explore how AI supports predictive maintenance, quality control, and process optimization.
- Evaluate the steps involved in launching AI-driven initiatives.
Format of the Course
- Interactive lecture and discussion.
- Real-world case studies and group exercises.
- Strategic frameworks and implementation guidance.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Hands-on Workshop: Implementing AI Use Cases with Industrial Data
21 HoursAI Use Case Implementation is a hands-on, project-driven approach to applying machine learning, computer vision, and data analytics to solve real-world industrial challenges using actual or simulated datasets.
This instructor-led, live training (online or onsite) is aimed at intermediate-level cross-functional teams who wish to collaboratively implement AI use cases aligned with their operational goals and gain experience working with industrial data pipelines.
By the end of this training, participants will be able to:
- Select and scope practical AI use cases from operations, quality, or maintenance.
- Work collaboratively across roles to develop machine learning solutions.
- Handle, clean, and analyze diverse industrial datasets.
- Present a working prototype of an AI-enabled solution based on a selected use case.
Format of the Course
- Interactive lecture and discussion.
- Group-based exercises and project work.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Developing Intelligent Bots with Azure
14 HoursThe Azure Bot Service combines the power of the Microsoft Bot Framework and Azure functions to enable rapid development of intelligent bots.
In this instructor-led, live training, participants will learn how to easily create an intelligent bot using Microsoft Azure
By the end of this training, participants will be able to:
- Learn the fundamentals of intelligent bots
- Learn how to create intelligent bots using cloud applications
- Understand how to use the Microsoft Bot Framework, the Bot Builder SDK, and the Azure Bot Service
- Understand how to design bots using bot patterns
- Develop their first intelligent bot using Microsoft Azure
Audience
- Developers
- Hobbyists
- Engineers
- IT Professionals
Format of the course
- Part lecture, part discussion, exercises and heavy hands-on practice
Developing a Bot
14 HoursA bot or chatbot is like a computer assistant that is used to automate user interactions on various messaging platforms and get things done faster without the need for users to speak to another human.
In this instructor-led, live training, participants will learn how to get started in developing a bot as they step through the creation of sample chatbots using bot development tools and frameworks.
By the end of this training, participants will be able to:
- Understand the different uses and applications of bots
- Understand the complete process in developing bots
- Explore the different tools and platforms used in building bots
- Build a sample chatbot for Facebook Messenger
- Build a sample chatbot using Microsoft Bot Framework
Audience
- Developers interested in creating their own bot
Format of the course
- Part lecture, part discussion, exercises and heavy hands-on practice
Building Digital Twins with AI and Real-Time Data
21 HoursDigital Twins are virtual replicas of physical systems enhanced by real-time data and AI-driven intelligence.
This instructor-led, live training (online or onsite) is aimed at intermediate-level professionals who wish to build, deploy, and optimize digital twin models using real-time data and AI-based insights.
By the end of this training, participants will be able to:
- Understand the architecture and components of digital twins.
- Use simulation tools to model complex systems and environments.
- Integrate real-time data streams into virtual models.
- Apply AI techniques for predictive behavior and anomaly detection.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Edge AI for Manufacturing: Real-Time Intelligence at the Device Level
21 HoursEdge AI is the deployment of artificial intelligence models directly on devices and machines at the edge of the network, enabling real-time decision-making with minimal latency.
This instructor-led, live training (online or onsite) is aimed at advanced-level embedded and IoT professionals who wish to deploy AI-powered logic and control systems in manufacturing environments where speed, reliability, and offline operation are critical.
By the end of this training, participants will be able to:
- Understand the architecture and benefits of edge AI systems.
- Build and optimize AI models for deployment on embedded devices.
- Use tools like TensorFlow Lite and OpenVINO for low-latency inference.
- Integrate edge intelligence with sensors, actuators, and industrial protocols.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Industrial Computer Vision with AI: Defect Detection and Visual Inspection
14 HoursIndustrial computer vision with AI is transforming how manufacturers and QA teams detect surface defects, verify part conformity, and automate visual inspection processes.
This instructor-led, live training (online or onsite) is aimed at intermediate-level to advanced-level QA teams, automation engineers, and developers who wish to design and implement computer vision systems for defect detection and inspection using AI techniques.
By the end of this training, participants will be able to:
- Understand the architecture and components of industrial vision systems.
- Build AI models for visual defect detection using deep learning.
- Integrate real-time inspection pipelines with industrial cameras and devices.
- Deploy and optimize AI-powered inspection systems for production environments.
Format of the Course
- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.
Course Customization Options
- To request a customized training for this course, please contact us to arrange.
Artificial Intelligence (AI) for Mechatronics
21 HoursThis instructor-led, live training in Indonesia (online or onsite) is aimed at engineers who wish to learn about the applicability of artificial intelligence to mechatronic systems.
By the end of this training, participants will be able to:
- Gain an overview of artificial intelligence, machine learning, and computational intelligence.
- Understand the concepts of neural networks and different learning methods.
- Choose artificial intelligence approaches effectively for real-life problems.
- Implement AI applications in mechatronic engineering.
Physical AI for Robotics and Automation
21 HoursThis instructor-led, live training in Indonesia (online or onsite) is aimed at intermediate-level participants who wish to enhance their skills in designing, programming, and deploying intelligent robotic systems for automation and beyond.
By the end of this training, participants will be able to:
- Understand the principles of Physical AI and its applications in robotics and automation.
- Design and program intelligent robotic systems for dynamic environments.
- Implement AI models for autonomous decision-making in robots.
- Leverage simulation tools for robotic testing and optimization.
- Address challenges such as sensor fusion, real-time processing, and energy efficiency.
Smart Robots for Developers
84 HoursA Smart Robot is an Artificial Intelligence (AI) system that can learn from its environment and its experience and build on its capabilities based on that knowledge. Smart Robots can collaborate with humans, working along-side them and learning from their behavior. Furthermore, they have the capacity for not only manual labor, but cognitive tasks as well. In addition to physical robots, Smart Robots can also be purely software based, residing in a computer as a software application with no moving parts or physical interaction with the world.
In this instructor-led, live training, participants will learn the different technologies, frameworks and techniques for programming different types of mechanical Smart Robots, then apply this knowledge to complete their own Smart Robot projects.
The course is divided into 4 sections, each consisting of three days of lectures, discussions, and hands-on robot development in a live lab environment. Each section will conclude with a practical hands-on project to allow participants to practice and demonstrate their acquired knowledge.
The target hardware for this course will be simulated in 3D through simulation software. The ROS (Robot Operating System) open-source framework, C++ and Python will be used for programming the robots.
By the end of this training, participants will be able to:
- Understand the key concepts used in robotic technologies
- Understand and manage the interaction between software and hardware in a robotic system
- Understand and implement the software components that underpin Smart Robots
- Build and operate a simulated mechanical Smart Robot that can see, sense, process, grasp, navigate, and interact with humans through voice
- Extend a Smart Robot's ability to perform complex tasks through Deep Learning
- Test and troubleshoot a Smart Robot in realistic scenarios
Audience
- Developers
- Engineers
Format of the course
- Part lecture, part discussion, exercises and heavy hands-on practice
Note
- To customize any part of this course (programming language, robot model, etc.) please contact us to arrange.